Find the volume of the solid obtained by the rotating the region bounded by the given curves about the specified line. Sketch the region, the solid, and a typical disk or washer.

1) $y=x^{2}, \quad x=1, \quad y=0$ | about the x-axis

2) $y=\frac{1}{x}, \quad x=1, \quad x=2, \quad y=0 \quad \mid$ about the x-axis

3) $y=x^{2}, \quad 0 \leq x \leq 2, \quad y=4, \quad x=0$ | about the y-axis

4) $x=y-y^{2}, \quad x=0 \mid$ about the y-axis

5) $y=x^{2}, \quad y^{2}=x \mid$ about the x-axis

6) $y=\sec x, \quad y=1, \quad x=-1, \quad x=1 \mid$ about the x-axis

7) $y^{2}=x, \quad x=2 y \mid$ about the y-axis

8) $y=x^{\frac{2}{3}}, \quad x=1, \quad y=0 \mid$ about the y-axis

9) $y=x, \quad y=\sqrt{x}$ | about $y=1$

10) $y=x^{2}, \quad y=4$ | about $y=4$

11) $y=\frac{1}{x}, \quad y=0, \quad x=1, \quad x=3 \mid$ about $y=-1$

12) $x=y^{2}, \quad x=1 \mid$ about $x=1$

13) $y=x, \quad y=\sqrt{x} \quad$ | about $x=2$

14) $y=x^{2}, \quad x=y^{2} \quad \mid$ about $x=-1$

15) $y=x, \quad y=0, \quad x=2, \quad x=4$ । about $x=1$

Set up, but do not evaluate, and integral for the volume of the solid obtained by rotating the region bounded by the given curves about the specified line.
16) $y=\tan ^{3} x, \quad y=1, \quad x=0 \mid$ about $y=1$
17) $y=(x-2)^{4}, \quad 8 x-y=16 \quad \mid$ about $x=10$
18) $y=0, \quad y=\sin x, \quad 0 \leq x \leq \pi$ | about $y=-2$
19) $x^{2}-y^{2}=1, \quad x=3 \mid$ about $x=-2$
20) Use a graph to find approximate x-coordinates of the points of intersection of the given curves. Then find (approximately) the volume of the solid obtained by rotating about the x-axis the region bounded by these curves.

$$
y=3 \sin \left(x^{2}\right), \quad y=e^{\frac{x}{2}}+e^{-2 x}
$$

21) A CAT scan produces equally spaced cross-sectional views of a human organ that provide information about the organ otherwise obtained only by surgery. Suppose that a CAT scan of a human liver shows crosssections spaced 1.5 cm apart. The liver is 15 cm long and the cross-sectional areas, in square centimeters, are $0,18,58,79,94,106,117,128,63,39$, and 0 . Use the Midpoint Rule to estimate the volume of the liver.

Find the volume of the described solid S.
22) A right circular cone with height h and base radius r. Use the following diagram to find the volume by using calculus.

23) A frustum of a pyramid with square base of side b, square top of side a, and height h. What happens if $a=b$? What happens if $a=0$? Use the following diagram to find the volume by using calculus.

24) The base S is a circular disk with radius r. Parallel cross-sections perpendicular to the base are squares. Use the following diagram to find the volume by using calculus.

25) The base of S is an elliptical region with boundary curve $9 x^{2}+4 y^{2}=36$. Cross-sections perpendicular to the x-axis are isosceles right triangles with hypotenuse in the base.
26) The base of S is the parabolic region $\left\{(x, y) \mid x^{2} \leq y \leq 1\right\}$. Cross-sections perpendicular to the y-axis are equilateral triangles.
27) Find the volume common to two spheres, each with radius r, if the center of each sphere lies on the surface of the other sphere.

